Beginner's Python Cheat Sheet

Variables and Strings

Variables are used to assign labels to values. A string is a series of characters, surrounded by single or double quotes. Python's f-strings allow you to use variables inside strings to build dynamic messages.

Hello world

```
print("Hello world!")
```

Hello world with a variable

```
msg = "Hello world!"
print(msg)
```

f-strings (using variables in strings)

```
first_name = 'albert'
last_name = 'einstein'
full_name = f"{first_name} {last_name}"
print(full name)
```

Lists

A list stores a series of items in a particular order. You access items using an index, or within a loop.

Make a list

```
bikes = ['trek', 'redline', 'giant']
```

Get the first item in a list

```
first bike = bikes[0]
```

Get the last item in a list

last_bike = bikes[-1]

Looping through a list

```
for bike in bikes:
    print(bike)
```

Adding items to a list

```
bikes = []
bikes.append('trek')
bikes.append('redline')
bikes.append('giant')
```

Making numerical lists

```
squares = []
for x in range(1, 11):
    squares.append(x**2)
```

Lists (cont.)

List comprehensions

```
squares = [x**2 \text{ for } x \text{ in range}(1, 11)]
```

Slicing a list

```
finishers = ['sam', 'bob', 'ada', 'bea']
first two = finishers[:2]
```

Copying a list

```
copy of bikes = bikes[:]
```

Tuples

Tuples are similar to lists, but the items in a tuple can't be modified.

Making a tuple

```
dimensions = (1920, 1080) resolutions = ('720p', '1080p', '4K')
```

If statements

If statements are used to test for particular conditions and respond appropriately.

Conditional tests

Conditional tests with lists

```
'trek' in bikes
'surly' not in bikes
```

Assigning boolean values

```
game_active = True
can edit = False
```

A simple if test

```
if age >= 18:
    print("You can vote!")
```

If-elif-else statements

```
if age < 4:
    ticket_price = 0
elif age < 18:
    ticket_price = 10
elif age < 65:
    ticket_price = 40
else:
    ticket price = 15</pre>
```

Dictionaries

Dictionaries store connections between pieces of information. Each item in a dictionary is a key-value pair.

A simple dictionary

```
alien = {'color': 'green', 'points': 5}
```

Accessing a value

```
print(f"The alien's color is {alien['color']}.")
```

Adding a new key-value pair

```
alien['x position'] = 0
```

Looping through all key-value pairs

```
fav_numbers = {'eric': 7, 'ever': 4, 'erin': 47}
for name, number in fav_numbers.items():
    print(f"{name} loves {number}.")
```

Looping through all keys

```
fav_numbers = {'eric': 7, 'ever': 4, 'erin': 47}
for name in fav_numbers.keys():
    print(f"{name} loves a number.")
```

Looping through all the values

```
fav_numbers = {'eric': 7, 'ever': 4, 'erin': 47}
for number in fav_numbers.values():
    print(f"{number} is a favorite.")
```

User input

Your programs can prompt the user for input. All input is stored as a string.

Prompting for a value

```
name = input("What's your name? ")
print(f"Hello, {name}!")
```

Prompting for numerical input

```
age = input("How old are you? ")
age = int(age)

pi = input("What's the value of pi? ")
pi = float(pi)
```

Python Crash Course

While loops

A while loop repeats a block of code as long as a certain condition is true. While loops are especially useful when you can't know ahead of time how many times a loop should run.

A simple while loop

```
current_value = 1
while current_value <= 5:
    print(current_value)
    current_value += 1</pre>
```

Letting the user choose when to quit

```
msg = ''
while msg != 'quit':
    msg = input("What's your message? ")

if msg != 'quit':
    print(msg)
```

Functions

Functions are named blocks of code, designed to do one specific job. Information passed to a function is called an argument, and information received by a function is called a parameter.

A simple function

```
def greet_user():
    """Display a simple greeting."""
    print("Hello!")
greet user()
```

Passing an argument

```
def greet_user(username):
    """Display a personalized greeting."""
    print(f"Hello, {username}!")
greet user('jesse')
```

Default values for parameters

```
def make_pizza(topping='pineapple'):
    """Make a single-topping pizza."""
    print(f"Have a {topping} pizza!")

make_pizza()
make_pizza('mushroom')
```

Returning a value

```
def add_numbers(x, y):
    """Add two numbers and return the sum."""
    return x + y

sum = add_numbers(3, 5)
print(sum)
```

Classes

A class defines the behavior of an object and the kind of information an object can store. The information in a class is stored in attributes, and functions that belong to a class are called methods. A child class inherits the attributes and methods from its parent class.

Creating a dog class

```
class Dog:
    """Represent a dog."""

    def __init__(self, name):
        """Initialize dog object."""
        self.name = name

    def sit(self):
        """Simulate sitting."""
        print(f"{self.name} is sitting.")

my_dog = Dog('Peso')

print(f"{my_dog.name} is a great dog!")
my_dog.sit()
```

Inheritance

```
class SARDog(Dog):
    """Represent a search dog."""

    def __init__(self, name):
        """Initialize the sardog."""
        super().__init__(name)

    def search(self):
        """Simulate searching."""
        print(f"{self.name} is searching.")

my_dog = SARDog('Willie')

print(f"{my_dog.name} is a search dog.")

my_dog.sit()

my_dog.search()
```

Infinite Skills

If you had infinite programming skills, what would you build?

As you're learning to program, it's helpful to think about the real-world projects you'd like to create. It's a good habit to keep an "ideas" notebook that you can refer to whenever you want to start a new project.

If you haven't done so already, take a few minutes and describe three projects you'd like to create. As you're learning you can write small programs that relate to these ideas, so you can get practice writing code relevant to topics you're interested in.

Working with files

Your programs can read from files and write to files. The pathlib library makes it easier to work with files and directories. Once you have a path defined, you can work with the read_text() and write_text() methods.

Reading the contents of a file

The read_text() method reads in the entire contents of a file. You can then split the text into a list of individual lines, and then process each line as you need to.

```
from pathlib import Path

path = Path('siddhartha.txt')
contents = path.read_text()
lines = contents.splitlines()

for line in lines:
    print(line)
```

Writing to a file

```
path = Path('journal.txt')
msg = "I love programming.")
path.write_text(msg)
```

Exceptions

Exceptions help you respond appropriately to errors that are likely to occur. You place code that might cause an error in the try block. Code that should run in response to an error goes in the except block. Code that should run only if the try block was successful goes in the else block.

Catching an exception

```
prompt = "How many tickets do you need? "
num_tickets = input(prompt)

try:
    num_tickets = int(num_tickets)
except ValueError:
    print("Please try again.")
else:
    print("Your tickets are printing.")
```

Zen of Python

Simple is better than complex

If you have a choice between a simple and a complex solution, and both work, use the simple solution. Your code will be easier to maintain, and it will be easier for you and others to build on that code later on.

Beginner's Python Cheat Sheet - Lists

What are lists?

A list stores a series of items in a particular order. Lists allow you to store sets of information in one place, whether you have just a few items or millions of items. Lists are one of Python's most powerful features readily accessible to new programmers, and they tie together many important concepts in programming.

Defining a list

Use square brackets to define a list, and use commas to separate individual items in the list. Use plural names for lists, to make it clear that the variable represents more than one item.

Making a list

```
users = ['val', 'bob', 'mia', 'ron', 'ned']
```

Accessing elements

Individual elements in a list are accessed according to their position, called the index. The index of the first element is 0, the index of the second element is 1, and so forth. Negative indices refer to items at the end of the list. To get a particular element, write the name of the list and then the index of the element in square brackets.

Getting the first element

```
first_user = users[0]
```

Getting the second element

```
second_user = users[1]
```

Getting the last element

```
newest_user = users[-1]
```

Modifying individual items

Once you've defined a list, you can change the value of individual elements in the list. You do this by referring to the index of the item you want to modify.

Changing an element

```
users[0] = 'valerie'
users[1] = 'robert'
users[-2] = 'ronald'
```

Adding elements

You can add elements to the end of a list, or you can insert them wherever you like in a list. This allows you to modify existing lists, or start with an empty list and then add items to it as the program develops.

Adding an element to the end of the list

```
users.append('amy')
```

Starting with an empty list

```
users = []
users.append('amy')
users.append('val')
users.append('bob')
users.append('mia')
```

Inserting elements at a particular position

```
users.insert(0, 'joe')
users.insert(3, 'bea')
```

Removing elements

You can remove elements by their position in a list, or by the value of the item. If you remove an item by its value, Python removes only the first item that has that value.

Deleting an element by its position

```
del users[-1]
```

Removing an item by its value

```
users.remove('mia')
```

Popping elements

If you want to work with an element that you're removing from the list, you can "pop" the item. If you think of the list as a stack of items, pop() takes an item off the top of the stack.

By default pop() returns the last element in the list, but you can also pop elements from any position in the list.

Pop the last item from a list

```
most_recent_user = users.pop()
print(most_recent_user)
```

Pop the first item in a list

```
first_user = users.pop(0)
print(first_user)
```

List length

The len() function returns the number of items in a list.

Find the length of a list

```
num_users = len(users)
print(f"We have {num_users} users.")
```

Sorting a list

The sort() method changes the order of a list permanently. The sorted() function returns a copy of the list, leaving the original list unchanged.

You can sort the items in a list in alphabetical order, or reverse alphabetical order. You can also reverse the original order of the list. Keep in mind that lowercase and uppercase letters may affect the sort order.

Sorting a list permanently

```
users.sort()
```

Sorting a list permanently in reverse alphabetical order

```
users.sort(reverse=True)
```

Sorting a list temporarily

```
print(sorted(users))
print(sorted(users, reverse=True))
```

Reversing the order of a list

```
users.reverse()
```

Looping through a list

Lists can contain millions of items, so Python provides an efficient way to loop through all the items in a list. When you set up a loop, Python pulls each item from the list one at a time and assigns it to a temporary variable, which you provide a name for. This name should be the singular version of the list name.

The indented block of code makes up the body of the loop, where you can work with each individual item. Any lines that are not indented run after the loop is completed.

Printing all items in a list

```
for user in users:
    print(user)
```

Printing a message for each item, and a separate message afterwards

```
for user in users:
    print(f"\nWelcome, {user}!")
    print("We're so glad you joined!")
```

```
print("\nWelcome, we're glad to see you all!")
```

Python Crash Course

A Hands-on, Project-Based Introduction to Programming

ehmatthes.github.io/pcc_3e

The range() function

You can use the range() function to work with a set of numbers efficiently. The range() function starts at 0 by default, and stops one number below the number passed to it. You can use the list() function to efficiently generate a large list of numbers.

Printing the numbers 0 to 1000

```
for number in range(1001):
    print(number)
```

Printing the numbers 1 to 1000

```
for number in range(1, 1001):
    print(number)
```

Making a list of numbers from 1 to a million

```
numbers = list(range(1, 1_000_001))
```

Simple statistics

There are a number of simple statistical operations you can run on a list containing numerical data.

Finding the minimum value in a list

```
ages = [93, 99, 66, 17, 85, 1, 35, 82, 2, 77] youngest = min(ages)
```

Finding the maximum value

```
ages = [93, 99, 66, 17, 85, 1, 35, 82, 2, 77] oldest = max(ages)
```

Finding the sum of all values

```
ages = [93, 99, 66, 17, 85, 1, 35, 82, 2, 77] total years = sum(ages)
```

Slicing a list

You can work with any subset of elements from a list. A portion of a list is called a slice. To slice a list start with the index of the first item you want, then add a colon and the index after the last item you want. Leave off the first index to start at the beginning of the list, and leave off the second index to slice through the end of the list.

Getting the first three items

```
finishers = ['kai', 'abe', 'ada', 'gus', 'zoe']
first three = finishers[:3]
```

Getting the middle three items

```
middle three = finishers[1:4]
```

Getting the last three items

```
last_three = finishers[-3:]
```

Copying a list

To copy a list make a slice that starts at the first item and ends at the last item. If you try to copy a list without using this approach, whatever you do to the copied list will affect the original list as well.

Making a copy of a list

```
finishers = ['kai', 'abe', 'ada', 'gus', 'zoe']
copy_of_finishers = finishers[:]
```

List comprehensions

You can use a loop to generate a list based on a range of numbers or on another list. This is a common operation, so Python offers a more efficient way to do it. List comprehensions may look complicated at first; if so, use the for loop approach until you're ready to start using comprehensions.

To write a comprehension, define an expression for the values you want to store in the list. Then write a for loop to generate input values needed to make the list.

Using a loop to generate a list of square numbers

```
squares = []
for x in range(1, 11):
    square = x**2
    squares.append(square)
```

Using a comprehension to generate a list of square numbers

```
squares = [x**2 \text{ for } x \text{ in range}(1, 11)]
```

Using a loop to convert a list of names to upper case

```
names = ['kai', 'abe', 'ada', 'gus', 'zoe']
upper_names = []
for name in names:
    upper_names.append(name.upper())
```

Using a comprehension to convert a list of names to upper case

```
names = ['kai', 'abe', 'ada', 'gus', 'zoe']
upper_names = [name.upper() for name in names]
```

Styling your code

Readability counts

Follow common Python formatting conventions:

- Use four spaces per indentation level.
- · Keep your lines to 79 characters or fewer.
- Use single blank lines to group parts of your program visually.

Tuples

A tuple is like a list, except you can't change the values in a tuple once it's defined. Tuples are good for storing information that shouldn't be changed throughout the life of a program. Tuples are usually designated by parentheses.

You can overwrite an entire tuple, but you can't change the values of individual elements.

Defining a tuple

```
dimensions = (800, 600)
```

Looping through a tuple

```
for dimension in dimensions:
    print(dimension)
```

Overwriting a tuple

```
dimensions = (800, 600)
print(dimensions)

dimensions = (1200, 900)
print(dimensions)
```

Visualizing your code

When you're first learning about data structures such as lists, it helps to visualize how Python is working with the information in your program. Python Tutor is a great tool for seeing how Python keeps track of the information in a list. Try running the following code on pythontutor.com, and then run your own code.

Build a list and print the items in the list

```
dogs = []
dogs.append('willie')
dogs.append('hootz')
dogs.append('peso')
dogs.append('goblin')

for dog in dogs:
    print("Hello {dog}!")
print("I love these dogs!")

print("\nThese were my first two dogs:")
old_dogs = dogs[:2]
for old_dog in old_dogs:
    print(old_dog)

del dogs[0]
dogs.remove('peso')
print(dogs)
```


Beginner's Python Cheat Sheet -Dictionaries

What are dictionaries?

Python's dictionaries allow you to connect pieces of related information. Each piece of information in a dictionary is stored as a key-value pair. When you provide a key, Python returns the value associated with that key. You can loop through all the key-value pairs, all the keys, or all the values.

Defining a dictionary

Use curly braces to define a dictionary. Use colons to connect keys and values, and use commas to separate individual key-value pairs.

Making a dictionary

```
alien_0 = {'color': 'green', 'points': 5}
```

Accessing values

To access the value associated with an individual key give the name of the dictionary and then place the key in a set of square brackets. If the key you provided is not in the dictionary, an error will occur.

You can also use the get() method, which returns None instead of an error if the key doesn't exist. You can also specify a default value to use if the key is not in the dictionary.

Getting the value associated with a key

```
alien_0 = {'color': 'green', 'points': 5}
print(alien_0['color'])
print(alien_0['points'])
```

Getting the value with get()

```
alien_0 = {'color': 'green'}
alien_color = alien_0.get('color')
alien_points = alien_0.get('points', 0)
alien_speed = alien_0.get('speed')
print(alien_color)
print(alien_points)
print(alien_speed)
```

Adding new key-value pairs

You can store as many key-value pairs as you want in a dictionary, until your computer runs out of memory. To add a new key-value pair to an existing dictionary give the name of the dictionary and the new key in square brackets, and set it equal to the new value.

This also allows you to start with an empty dictionary and add key-value pairs as they become relevant.

Adding a key-value pair

```
alien_0 = {'color': 'green', 'points': 5}
alien_0['x'] = 0
alien_0['y'] = 25
alien_0['speed'] = 1.5
```

Starting with an empty dictionary

```
alien_0 = {}
alien_0['color'] = 'green'
alien_0['points'] = 5
```

Modifying values

You can modify the value associated with any key in a dictionary. To do so give the name of the dictionary and the key in square brackets, then provide the new value for that key.

Modifying values in a dictionary

```
print(alien_0)
# Change the alien's color and point value.
alien_0['color'] = 'yellow'
alien_0['points'] = 10
print(alien_0)
```

alien 0 = {'color': 'green', 'points': 5}

Removing key-value pairs

You can remove any key-value pair you want from a dictionary. To do this use the del keyword and the dictionary name, followed by the key in square brackets. This will delete the key and its associated value.

Deleting a key-value pair

```
alien_0 = {'color': 'green', 'points': 5}
print(alien_0)

del alien_0['points']
print(alien_0)
```

Visualizing dictionaries

Try running some of these examples on pythontutor.com, and then run one of your own programs that uses dictionaries.

Looping through a dictionary

You can loop through a dictionary in three ways: you can loop through all the key-value pairs, all the keys, or all the values.

Dictionaries keep track of the order in which key-value pairs are added. If you want to process the information in a different order, you can sort the keys in your loop, using the sorted() function.

Looping through all key-value pairs

Store people's favorite languages.

```
fav_languages = {
    'jen': 'python',
    'sarah': 'c',
    'edward': 'ruby',
    'phil': 'python',
    }

# Show each person's favorite language.
for name, language in fav_languages.items():
    print(f"{name}: {language}")
```

Looping through all the keys

```
# Show everyone who's taken the survey.
for name in fav_languages.keys():
    print(name)
```

Looping through all the values

```
# Show all the languages that have been chosen.
for language in fav_languages.values():
    print(language)
```

Looping through all the keys in reverse order

Dictionary length

You can find the number of key-value pairs in a dictionary using the len() function.

Finding a dictionary's length

```
num responses = len(fav languages)
```

Python Crash Course

Nesting - A list of dictionaries

It's sometimes useful to store a number of dictionaries in a list; this is called nesting.

Storing dictionaries in a list

```
# Start with an empty list.
users = []
# Make a new user, and add them to the list.
new user = {
    'last': 'fermi',
    'first': 'enrico',
    'username': 'efermi',
users.append(new user)
# Make another new user, and add them as well.
new user = {
    'last': 'curie',
    'first': 'marie',
    'username': 'mcurie',
users.append(new user)
# Show all information about each user.
print("User summary:")
for user dict in users:
    for k, v in user dict.items():
        print(f"{k}: {v}")
    print("\n")
```

You can also define a list of dictionaries directly, without using append():

```
# Define a list of users, where each user
# is represented by a dictionary.
users = [
    {
        'last': 'fermi'.
        'first': 'enrico',
        'username': 'efermi',
        'last': 'curie',
        'first': 'marie',
        'username': 'mcurie',
    },
# Show all information about each user.
print("User summary:")
for user dict in users:
    for k, v in user dict.items():
        print(f"{k}: {v}")
    print("\n")
```

Nesting - Lists in a dictionary

Storing a list inside a dictionary allows you to associate more than one value with each key.

Storing lists in a dictionary

```
# Store multiple languages for each person.
fav_languages = {
    'jen': ['python', 'ruby'],
    'sarah': ['c'],
    'edward': ['ruby', 'go'],
    'phil': ['python', 'haskell'],
}
# Show all responses for each person.
for name, langs in fav_languages.items():
    print(f"{name}: ")
    for lang in langs:
        print(f"- {lang}")
```

Nesting - A dictionary of dictionaries

You can store a dictionary inside another dictionary. In this case each value associated with a key is itself a dictionary.

Storing dictionaries in a dictionary

```
users = {
    'aeinstein': {
        'first': 'albert',
        'last': 'einstein',
        'location': 'princeton',
        },
    'mcurie': {
        'first': 'marie',
        'last': 'curie',
        'location': 'paris',
        },
    }
for username, user dict in users.items():
    full name = f"{user dict['first']} "
    full name += user_dict['last']
    location = user dict['location']
    print(f"\nUsername: {username}")
    print(f"\tFull name: {full name.title()}")
    print(f"\tLocation: {location.title()}")
```

Levels of nesting

Nesting is extremely useful in certain situations. However, be aware of making your code overly complex. If you're nesting items much deeper than what you see here there are probably simpler ways of managing your data, such as using classes.

Dictionary Comprehensions

A comprehension is a compact way of generating a dictionary, similar to a list comprehension. To make a dictionary comprehension, define an expression for the key-value pairs you want to make. Then write a for loop to generate the values that will feed into this expression.

The zip() function matches each item in one list to each item in a second list. It can be used to make a dictionary from two lists.

Using a loop to make a dictionary

```
squares = {}
for x in range(5):
    squares[x] = x**2
```

Using a dictionary comprehension

```
squares = \{x:x**2 \text{ for } x \text{ in range}(5)\}
```

Using zip() to make a dictionary

```
group_1 = ['kai', 'abe', 'ada', 'gus', 'zoe']
group_2 = ['jen', 'eva', 'dan', 'isa', 'meg']
pairings = {name:name_2
   for name, name_2 in zip(group_1, group_2)}
```

Generating a million dictionaries

You can use a loop to generate a large number of dictionaries efficiently, if all the dictionaries start out with similar data.

A million aliens

```
aliens = []
# Make a million green aliens, worth 5 points
# each. Have them all start in one row.
for alien_num in range(1_000_000):
    new_alien = {
        'color': 'green',
        'points': 5,
        'x': 20 * alien_num,
        'y': 0
    }
    aliens.append(new_alien)
# Prove the list contains a million aliens.
num_aliens = len(aliens)
print("Number of aliens created:")
print(num aliens)
```


Beginner's Python Cheat Sheet If Statements and While Loops

What are if statements? What are while loops?

Python's if statements allow you to examine the current state of a program and respond appropriately to that state. You can write a simple if statement that checks one condition, or you can create a complex series of statements that identify the exact conditions you're interested in.

while loops run as long as certain conditions remain true. You can use while loops to let your programs run as long as your users want them to.

Conditional Tests

A conditional test is an expression that can be evaluated as true or false. Python uses the values True and False to decide whether the code in an if statement should be executed.

Checking for equality

A single equal sign assigns a value to a variable. A double equal sign checks whether two values are equal.

If your conditional tests aren't doing what you expect them to, make sure you're not accidentally using a single equal sign.

```
>>> car = 'bmw'
>>> car == 'bmw'
True
>>> car = 'audi'
>>> car == 'bmw'
False
```

Ignoring case when making a comparison

```
>>> car = 'Audi'
>>> car.lower() == 'audi'
True
```

Checking for inequality

```
>>> topping = 'mushrooms'
>>> topping != 'anchovies'
True
```

Numerical comparisons

Testing numerical values is similar to testing string values.

Testing equality and inequality

```
>>> age = 18
>>> age == 18
True
>>> age != 18
False
```

Comparison operators

```
>>> age = 19
>>> age < 21
True
>>> age <= 21
True
>>> age <= 21
True
>>> age > 21
False
>>> age >= 21
False
```

Checking multiple conditions

You can check multiple conditions at the same time. The and operator returns True if all the conditions listed are true. The or operator returns True if any condition is true.

Using and to check multiple conditions

```
>>> age_0 = 22
>>> age_1 = 18
>>> age_0 >= 21 and age_1 >= 21
False
>>> age_1 = 23
>>> age_0 >= 21 and age_1 >= 21
True
```

Using or to check multiple conditions

```
>>> age_0 = 22
>>> age_1 = 18
>>> age_0 >= 21 or age_1 >= 21
True
>>> age_0 = 18
>>> age_0 >= 21 or age_1 >= 21
False
```

Boolean values

A boolean value is either True or False. Variables with boolean values are often used to keep track of certain conditions within a program.

Simple boolean values

```
game_active = True
is_valid = True
can_edit = False
```

If statements

Several kinds of if statements exist. Your choice of which to use depends on the number of conditions you need to test. You can have as many elif blocks as you need, and the else block is always optional.

Simple if statement

```
age = 19
if age >= 18:
    print("You're old enough to vote!")
```

If-else statements

```
age = 17
if age >= 18:
    print("You're old enough to vote!")
else:
    print("You can't vote yet.")
```

The if-elif-else chain

age = 12

```
if age < 4:
    price = 0
elif age < 18:
    price = 25
else:
    price = 40
print(f"Your cost is ${price}.")</pre>
```

Conditional tests with lists

You can easily test whether a certain value is in a list. You can also test whether a list is empty before trying to loop through the list.

Testing if a value is in a list

```
>>> players = ['al', 'bea', 'cyn', 'dale']
>>> 'al' in players
True
>>> 'eric' in players
False
```

Testing if two values are in a list

```
>>> 'al' in players and 'cyn' in players
```

Python Crash Course

Conditional tests with lists (cont.)

Testing if a value is not in a list

```
banned_users = ['ann', 'chad', 'dee']
user = 'erin'

if user not in banned_users:
    print("You can play!")
```

Checking if a list is empty

An empty list evaluates as False in an if statement.

```
players = []
if players:
    for player in players:
        print(f"Player: {player.title()}")
else:
    print("We have no players yet!")
```

Accepting input

You can allow your users to enter input using the input() function. All input is initially stored as a string. If you want to accept numerical input, you'll need to convert the input string value to a numerical type.

Simple input

```
name = input("What's your name? ")
print(f"Hello, {name}.")
```

Accepting numerical input using int()

```
age = input("How old are you? ")
age = int(age)

if age >= 18:
    print("\nYou can vote!")
else:
    print("\nSorry, you can't vote yet.")
```

Accepting numerical input using float()

```
tip = input("How much do you want to tip? ")
tip = float(tip)
print(f"Tipped ${tip}.")
```

While loops

A while loop repeats a block of code as long as a condition is true.

Counting to 5

```
current_number = 1
while current_number <= 5:
    print(current_number)
    current_number += 1</pre>
```

While loops (cont.)

Letting the user choose when to guit

```
prompt = "\nTell me something, and I'll "
prompt += "repeat it back to you."
prompt += "\nEnter 'quit' to end the program. "

message = ""
while message != 'quit':
    message = input(prompt)

if message != 'quit':
    print(message)
```

Using a flag

Flags are most useful in long-running programs where code from other parts of the program might need to end the loop.

```
prompt = "\nTell me something, and I'll "
prompt += "repeat it back to you."
prompt += "\nEnter 'quit' to end the program. "

active = True
while active:
    message = input(prompt)

if message == 'quit':
    active = False
else:
    print(message)
```

Using break to exit a loop

```
prompt = "\nWhat cities have you visited?"
prompt += "\nEnter 'quit' when you're done. "
while True:
    city = input(prompt)

if city == 'quit':
    break
else:
    print(f"I've been to {city}!")
```

Accepting input with Sublime Text

Sublime Text, and a number of other text editors can't run programs that prompt the user for input. You can use these editors to write programs that prompt for input, but you'll need to run them from a terminal.

Breaking out of loops

You can use the break statement and the continue statement with any of Python's loops. For example you can use break to quit a for loop that's working through a list or a dictionary. You can use continue to skip over certain items when looping through a list or dictionary as well.

While loops (cont.)

Using continue in a loop

```
banned users = ['eve', 'fred', 'gary', 'helen']
prompt = "\nAdd a player to your team."
prompt += "\nEnter 'quit' when you're done. "
players = []
while True:
    player = input(prompt)
   if player == 'quit':
        break
    elif player in banned users:
        print(f"{player} is banned!")
        continue
    else:
        players.append(player)
print("\nYour team:")
for player in players:
    print(player)
```

Avoiding infinite loops

Every while loop needs a way to stop running so it won't continue to run forever. If there's no way for the condition to become false, the loop will never stop running. You can usually press Ctrl-C to stop an infinite loop.

An infinite loop

```
while True:
    name = input("\nWho are you? ")
    print(f"Nice to meet you, {name}!")
```

Removing all instances of a value from a list

The remove() method removes a specific value from a list, but it only removes the first instance of the value you provide. You can use a while loop to remove all instances of a particular value.

Removing all cats from a list of pets

Beginner's Python Cheat Sheet -Functions

What are functions?

Functions are named blocks of code designed to do one specific job. Functions allow you to write code once that can then be run whenever you need to accomplish the same task.

Functions can take in the information they need, and return the information they generate. Using functions effectively makes your programs easier to write, read, test, and maintain.

Defining a function

The first line of a function is its definition, marked by the keyword def. The name of the function is followed by a set of parentheses and a colon. A docstring, in triple quotes, describes what the function does. The body of a function is indented one level.

To call a function, give the name of the function followed by a set of parentheses.

Making a function

```
def greet_user():
    """Display a simple greeting."""
    print("Hello!")
greet_user()
```

Passing information to a function

Information that's passed to a function is called an argument; information that's received by a function is called a parameter. Arguments are included in parentheses after the function's name, and parameters are listed in parentheses in the function's definition.

Passing a simple argument

```
def greet_user(username):
    """Display a simple greeting."""
    print(f"Hello, {username}!")

greet_user('jesse')
greet_user('diana')
greet_user('brandon')
```

Positional and keyword arguments

The two main kinds of arguments are positional and keyword arguments. When you use positional arguments Python matches the first argument in the function call with the first parameter in the function definition, and so forth.

With keyword arguments, you specify which parameter each argument should be assigned to in the function call. When you use keyword arguments, the order of the arguments doesn't matter.

Using positional arguments

```
def describe_pet(animal, name):
    """Display information about a pet."""
    print(f"\nI have a {animal}.")
    print(f"Its name is {name}.")

describe_pet('hamster', 'harry')
describe_pet('dog', 'willie')
```

Using keyword arguments

```
def describe_pet(animal, name):
    """Display information about a pet."""
    print(f"\nI have a {animal}.")
    print(f"Its name is {name}.")
```

describe_pet(animal='hamster', name='harry')
describe_pet(name='willie', animal='dog')

Default values

You can provide a default value for a parameter. When function calls omit this argument the default value will be used. Parameters with default values must be listed after parameters without default values in the function's definition so positional arguments can still work correctly.

Using a default value

```
def describe_pet(name, animal='dog'):
    """Display information about a pet."""
    print(f"\nI have a {animal}.")
    print(f"Its name is {name}.")

describe_pet('harry', 'hamster')
describe pet('willie')
```

Using None to make an argument optional

```
def describe_pet(animal, name=None):
    """Display information about a pet."""
    print(f"\nI have a {animal}.")
    if name:
        print(f"Its name is {name}.")

describe_pet('hamster', 'harry')
describe pet('snake')
```

Return values

A function can return a value or a set of values. When a function returns a value, the calling line should provide a variable which the return value can be assigned to. A function stops running when it reaches a return statement.

Returning a single value

```
def get_full_name(first, last):
    """Return a neatly formatted full name."""
    full_name = f"{first} {last}"
    return full_name.title()

musician = get_full_name('jimi', 'hendrix')
print(musician)
```

Returning a dictionary

```
def build_person(first, last):
    """Return a dictionary of information
    about a person.
    """
    person = {'first': first, 'last': last}
    return person

musician = build_person('jimi', 'hendrix')
print(musician)
```

Returning a dictionary with optional values

```
def build_person(first, last, age=None):
    """Return a dictionary of information
    about a person.
    """
    person = {'first': first, 'last': last}
    if age:
        person['age'] = age
    return person

musician = build_person('jimi', 'hendrix', 27)
print(musician)

musician = build_person('janis', 'joplin')
print(musician)
```

Visualizing functions

Try running some of these examples, and some of your own programs that use functions, on pythontutor.com.

Python Crash Course

A Hands-on, Project-Based Introduction to Programming

ehmatthes.github.io/pcc 3e

Passing a list to a function

You can pass a list as an argument to a function, and the function can work with the values in the list. Any changes the function makes to the list will affect the original list. You can prevent a function from modifying a list by passing a copy of the list as an argument.

Passing a list as an argument

```
def greet_users(names):
    """Print a simple greeting to everyone."""
    for name in names:
        msg = f"Hello, {name}!"
        print(msg)

usernames = ['hannah', 'ty', 'margot']
greet users(usernames)
```

Allowing a function to modify a list

The following example sends a list of models to a function for printing. The first list is emptied, and the second list is filled.

```
def print_models(unprinted, printed):
    """3d print a set of models."""
    while unprinted:
        current_model = unprinted.pop()
        print(f"Printing {current_model}")
        printed.append(current_model)

# Store some unprinted designs,
# and print each of them.
unprinted = ['phone case', 'pendant', 'ring']
printed = []
print_models(unprinted, printed)

print(f"\nUnprinted: {unprinted}")
print(f"Printed: {printed}")
```

Preventing a function from modifying a list

The following example is the same as the previous one, except the original list is unchanged after calling print_models().

```
def print_models(unprinted, printed):
    """3d print a set of models."""
    while unprinted:
        current_model = unprinted.pop()
        print(f"Printing {current_model}")
        printed.append(current_model)

# Store some unprinted designs,
# and print each of them.
original = ['phone case', 'pendant', 'ring']
printed = []

print models(original[:], printed)
```

print(f"\nOriginal: {original}")

print(f"Printed: {printed}")

Passing an arbitrary number of arguments

Sometimes you won't know how many arguments a function will need to accept. Python allows you to collect an arbitrary number of arguments into one parameter using the * operator. A parameter that accepts an arbitrary number of arguments must come last in the function definition. This parameter is often named *args.

The ** operator allows a parameter to collect an arbitrary number of keyword arguments. These are stored as a dictionary with the parameter names as keys, and the arguments as values. This is often named **kwargs.

Collecting an arbitrary number of arguments

Collecting an arbitrary number of keyword arguments

What's the best way to structure a function?

print(user 1)

There are many ways to write and call a function. When you're starting out, aim for something that simply works. As you gain experience you'll develop an understanding of the subtle advantages of different structures such as positional and keyword arguments, and the various approaches to importing functions. For now if your functions do what you need them to, you're doing well.

Modules

You can store your functions in a separate file called a module, and then import the functions you need into the file containing your main program. This allows for cleaner program files. Make sure your module is stored in the same directory as your main program.

Storing a function in a module

```
File: pizza.py

def make_pizza(size, *toppings):
    """Make a pizza."""
    print(f"\nMaking a {size} pizza.")
    print("Toppings:")
    for topping in toppings:
        print(f"- {topping}")
```

Importing an entire module

File: making_pizzas.py Every function in the module is available in the program file.

```
import pizza
pizza.make_pizza('medium', 'pepperoni')
pizza.make pizza('small', 'bacon', 'pineapple')
```

Importing a specific function

Only the imported functions are available in the program file.

```
from pizza import make_pizza

make_pizza('medium', 'pepperoni')
make_pizza('small', 'bacon', 'pineapple')
```

Giving a module an alias

```
import pizza as p
p.make_pizza('medium', 'pepperoni')
p.make_pizza('small', 'bacon', 'pineapple')
```

Giving a function an alias

```
from pizza import make_pizza as mp
mp('medium', 'pepperoni')
mp('small', 'bacon', 'pineapple')
```

Importing all functions from a module

Don't do this, but recognize it when you see it in others' code. It can result in naming conflicts, which can cause errors.

```
from pizza import *

make_pizza('medium', 'pepperoni')
make_pizza('small', 'bacon', 'pineapple')
```


Beginner's Python Cheat Sheet - Classes

What are classes?

Classes are the foundation of object-oriented programming. Classes represent real-world things you want to model in your programs such as dogs, cars, and robots. You use a class to make objects, which are specific instances of dogs, cars, and robots. A class defines the general behavior that a whole category of objects can have, and the information that can be associated with those objects.

Classes can inherit from each other—you can write a class that extends the functionality of an existing class. This allows you to code efficiently for a wide variety of situations. Even if you don't write many of your own classes, you'll frequently find yourself working with classes that others have written.

Creating and using a class

Consider how we might model a car. What information would we associate with a car, and what behavior would it have? The information is assigned to variables called attributes, and the behavior is represented by functions. Functions that are part of a class are called methods.

The Car class

```
class Car:
    """A simple attempt to model a car."""
   def __init__(self, make, model, year):
        """Initialize car attributes."""
        self.make = make
        self.model = model
        self.year = year
       # Fuel capacity and level in gallons.
        self.fuel capacity = 15
        self.fuel level = 0
   def fill tank(self):
        """Fill gas tank to capacity."""
        self.fuel level = self.fuel capacity
        print("Fuel tank is full.")
   def drive(self):
        """Simulate driving."""
        print("The car is moving.")
```

Creating and using a class (cont.)

Creating an instance from a class

```
my_car = Car('audi', 'a4', 2021)
```

Accessing attribute values

```
print(my_car.make)
print(my_car.model)
print(my_car.year)
```

Calling methods

```
my_car.fill_tank()
my_car.drive()
```

Creating multiple instances

```
my_car = Car('audi', 'a4', 2024)
my_old_car = Car('subaru', 'outback', 2018)
my_truck = Car('toyota', 'tacoma', 2020)
my old truck = Car('ford', 'ranger', 1999)
```

Modifying attributes

You can modify an attribute's value directly, or you can write methods that manage updating values more carefully. Methods like these can help validate the kinds of changes that are being made to an attribute.

Modifying an attribute directly

```
my_new_car = Car('audi', 'a4', 2024)
my_new_car.fuel_level = 5
```

Writing a method to update an attribute's value

```
def update_fuel_level(self, new_level):
    """Update the fuel level."""
    if new_level <= self.fuel_capacity:
        self.fuel_level = new_level
    else:
        print("The tank can't hold that much!")</pre>
```

Writing a method to increment an attribute's value

Naming conventions

In Python class names are usually written in CamelCase and object names are written in lowercase with underscores. Modules that contain classes should be named in lowercase with underscores.

Class inheritance

If the class you're writing is a specialized version of another class, you can use inheritance. When one class inherits from another, it automatically takes on all the attributes and methods of the parent class. The child class is free to introduce new attributes and methods, and override attributes and methods of the parent class.

To inherit from another class include the name of the parent class in parentheses when defining the new class.

The init () method for a child class

```
class ElectricCar(Car):
    """A simple model of an electric car."""

def __init__(self, make, model, year):
    """Initialize an electric car."""
    super().__init__(make, model, year)

# Attributes specific to electric cars.
    # Battery capacity in kWh.
    self.battery_size = 40

# Charge level in %.
    self.charge_level = 0
```

Adding new methods to the child class

```
class ElectricCar(Car):
    --snip--

def charge(self):
    """Fully charge the vehicle."""
    self.charge_level = 100
    print("The vehicle is fully charged.")
```

Using child methods and parent methods

```
my_ecar = ElectricCar('nissan', 'leaf', 2024)
my_ecar.charge()
my ecar.drive()
```

Finding your workflow

There are many ways to model real world objects and situations in code, and sometimes that variety can feel overwhelming. Pick an approach and try it; if your first attempt doesn't work, try a different approach.

Python Crash Course

A Hands-on, Project-Based Introduction to Programming

ehmatthes.github.io/pcc_3e

Class inheritance (cont.)

Overriding parent methods

```
class ElectricCar(Car):
    --snip--

def fill_tank(self):
    """Display an error message."""
    print("This car has no fuel tank!")
```

Instances as attributes

A class can have objects as attributes. This allows classes to work together to model more complex real-world things and concepts.

A Battery class

```
class Battery:
    """A battery for an electric car."""

def __init__(self, size=85):
    """Initialize battery attributes."""
    # Capacity in kWh, charge level in %.
    self.size = size
    self.charge_level = 0

def get_range(self):
    """Return the battery's range."""
    if self.size == 40:
        return 150
    elif self.size == 65:
        return 225
```

Using an instance as an attribute

```
class ElectricCar(Car):
    --snip--

def __init__(self, make, model, year):
    """Initialize an electric car."""
    super().__init__(make, model, year)

# Attribute specific to electric cars.
    self.battery = Battery()

def charge(self):
    """Fully charge the vehicle."""
    self.battery.charge_level = 100
    print("The vehicle is fully charged.")
```

Using the instance

```
my_ecar = ElectricCar('nissan', 'leaf', 2024)
my_ecar.charge()
print(my_ecar.battery.get_range())
my_ecar.drive()
```

Importing classes

Class files can get long as you add detailed information and functionality. To help keep your program files uncluttered, you can store your classes in modules and import the classes you need into your main program.

Storing classes in a file

car.py

```
"""Represent gas and electric cars."""

class Car:
    """A simple attempt to model a car."""
    --snip-

class Battery:
    """A battery for an electric car."""
    --snip--

class ElectricCar(Car):
    """A simple model of an electric car."""
    --snip--
```

Importing individual classes from a module

```
my_cars.py
from car import Car, ElectricCar

my_beetle = Car('volkswagen', 'beetle', 2021)
my_beetle.fill_tank()
my_beetle.drive()

my_leaf = ElectricCar('nissan', 'leaf', 2024)
my_leaf.charge()
```

Importing an entire module

my leaf.drive()

Importing all classes from a module

```
(Don't do this, but recognize it when you see it.)
```

```
from car import *

my_beetle = Car('volkswagen', 'beetle', 2021)
my_leaf = ElectricCar('nissan', 'leaf', 2024)
```

Storing objects in a list

from car import Car, ElectricCar

A list can hold as many items as you want, so you can make a large number of objects from a class and store them in a list

Here's an example showing how to make a fleet of rental cars, and make sure all the cars are ready to drive.

A fleet of rental cars

```
# Make lists to hold a fleet of cars.
gas fleet = []
electric fleet = []
# Make 250 gas cars and 500 electric cars.
for in range(250):
   car = Car('ford', 'escape', 2024)
   gas fleet.append(car)
for _ in range(500):
   ecar = ElectricCar('nissan', 'leaf', 2024)
   electric fleet.append(ecar)
# Fill the gas cars, and charge electric cars.
for car in gas fleet:
   car.fill tank()
for ecar in electric fleet:
   ecar.charge()
print(f"Gas cars: {len(gas fleet)}")
print(f"Electric cars: {len(electric fleet)}")
```

Understanding self

People often ask what the self variable represents. The self variable is a reference to an object that's been created from the class.

The self variable provides a way to make other variables and objects available everywhere in a class. The self variable is automatically passed to each method that's called through an object, which is why you see it listed first in most method definitions. Any variable attached to self is available everywhere in the class.

Understanding __init__()

The __init__() method is a function that's part of a class, just like any other method. The only special thing about __init__() is that it's called automatically every time you make a new instance from a class. If you accidentally misspell __init__(), the method won't be called and your object may not be created correctly.

Beginner's Python Cheat Sheet -Files and Exceptions

Why work with files? Why use exceptions?

Your programs can read information in from files, and they can write data to files. Reading from files allows you to work with a wide variety of information; writing to files allows users to pick up where they left off the next time they run your program. You can write text to files, and you can store Python structures such as lists in data files as well.

Exceptions are special objects that help your programs respond to errors in appropriate ways. For example if your program tries to open a file that doesn't exist, you can use exceptions to display an informative error message instead of having the program crash.

Reading from a file

To read from a file your program needs to specify the path to the file, and then read the contents of the file. The read_text() method returns a string containing the entire contents of the file

Reading an entire file at once

```
from pathlib import Path

path = Path('siddhartha.txt')
contents = path.read_text()
print(contents)
```

Working with a file's lines

It's often useful to work with individual lines from a file. Once the contents of a file have been read, you can get the lines using the splitlines() method.

```
from pathlib import Path

path = Path('siddhartha.txt')
contents = path.read_text()

lines = contents.splitlines()

for line in lines:
    print(line)
```

Writing to a file

The write_text() method can be used to write text to a file. Be careful, this will write over the current file if it already exists. To append to a file, read the contents first and then rewrite the entire file.

Writing to a file

```
from pathlib import Path
path = Path("programming.txt")
msg = "I love programming!"
path.write text(msg)
```

Writing multiple lines to a file

from pathlib import Path

```
from pathlib import Path

path = Path("programming.txt")

msg = "I love programming!"
msg += "\nI love making games."
path.write text(msg)
```

Appending to a file

```
path = Path("programming.txt")
contents = path.read_text()

contents += "\nI love programming!"
contents += "\nI love making games."
path.write text(contents)
```

Path objects

The pathlib module makes it easier to work with files in Python. A Path object represents a file or directory, and lets you carry out common directory and file operations.

With a relative path, Python usually looks for a location relative to the .py file that's running. Absolute paths are relative to your system's root folder ("/").

Windows uses backslashes when displaying file paths, but you should use forward slashes in your Python code.

Relative path

```
path = Path("text_files/alice.txt")
```

Absolute path

```
path = Path("/Users/eric/text_files/alice.txt")
```

Get just the filename from a path

```
>>> path = Path("text_files/alice.txt")
>>> path.name
'alice.txt'
```

Path objects (cont.)

Build a path

```
base_path = Path("/Users/eric/text_files")
file_path = base_path / "alice.txt"
```

Check if a file exists

```
>>> path = Path("text_files/alice.txt")
>>> path.exists()
True
```

Get filetype

```
>>> path.suffix
'.txt'
```

The try-except block

When you think an error may occur, you can write a tryexcept block to handle the exception that might be raised. The try block tells Python to try running some code, and the except block tells Python what to do if the code results in a particular kind of error.

Handling the ZeroDivisionError exception

```
try:
    print(5/0)
except ZeroDivisionError:
    print("You can't divide by zero!")
```

Handling the FileNotFoundError exception

```
from pathlib import Path

path = Path("siddhartha.txt")
try:
    contents = path.read_text()
except FileNotFoundError:
    msg = f"Can't find file: {path.name}."
    print(msg)
```

Knowing which exception to handle

It can be hard to know what kind of exception to handle when writing code. Try writing your code without a try block, and make it generate an error. The traceback will tell you what kind of exception your program needs to handle. It's a good idea to skim through the exceptions listed at docs.python.org/3/library/exceptions.html.

Python Crash Course

The else block

The try block should only contain code that may cause an error. Any code that depends on the try block running successfully should be placed in the else block.

Using an else block

```
print("Enter two numbers. I'll divide them.")

x = input("First number: ")

y = input("Second number: ")

try:
    result = int(x) / int(y)
except ZeroDivisionError:
    print("You can't divide by zero!")
else:
    print(result)
```

Preventing crashes caused by user input

Without the except block in the following example, the program would crash if the user tries to divide by zero. As written, it will handle the error gracefully and keep running.

```
"""A simple calculator for division only."""
print("Enter two numbers. I'll divide them.")
print("Enter 'q' to quit.")
while True:
    x = input("\nFirst number: ")
    if x == 'q':
        break
    y = input("Second number: ")
    if y == 'q':
        break
    trv:
        result = int(x) / int(y)
    except ZeroDivisionError:
        print("You can't divide by zero!")
    else:
        print(result)
```

Deciding which errors to report

Well-written, properly tested code is not very prone to internal errors such as syntax or logical errors. But every time your program depends on something external such as user input or the existence of a file, there's a possibility of an exception being raised.

It's up to you how to communicate errors to your users. Sometimes users need to know if a file is missing; sometimes it's better to handle the error silently. A little experience will help you know how much to report.

Failing silently

Sometimes you want your program to just continue running when it encounters an error, without reporting the error to the user. Using the pass statement in an except block allows you to do this.

Using the pass statement in an except block

Avoid bare except blocks

Exception handling code should catch specific exceptions that you expect to happen during your program's execution. A bare except block will catch all exceptions, including keyboard interrupts and system exits you might need when forcing a program to close.

If you want to use a try block and you're not sure which exception to catch, use Exception. It will catch most exceptions, but still allow you to interrupt programs intentionally.

Don't use bare except blocks

```
try:
    # Do something
except:
    pass
```

Use Exception instead

```
try:
    # Do something
except Exception:
    pass
```

Printing the exception

```
try:
    # Do something
except Exception as e:
    print(e, type(e))
```

Storing data with json

The json module allows you to dump simple Python data structures into a file, and load the data from that file the next time the program runs. The JSON data format is not specific to Python, so you can share this kind of data with people who work in other languages as well.

Knowing how to manage exceptions is important when working with stored data. You'll usually want to make sure the data you're trying to load exists before working with it.

Using json.dumps() to store data

```
from pathlib import Path
import json

numbers = [2, 3, 5, 7, 11, 13]

path = Path("numbers.json")
contents = json.dumps(numbers)
path.write text(contents)
```

Using json.loads() to read data

```
from pathlib import Path
import json

path = Path("numbers.json")
contents = path.read_text()
numbers = json.loads(contents)
print(numbers)
```

Making sure the stored data exists

```
from pathlib import Path
import json

path = Path("numbers.json")

try:
    contents = path.read_text()
except FileNotFoundError:
    msg = f"Can't find file: {path}"
    print(msg)
else:
    numbers = json.loads(contents)
    print(numbers)
```

Practice with exceptions

Take a program you've already written that prompts for user input, and add some error-handling code to the program. Run your program with appropriate and inappropriate data, and make sure it handles each situation correctly.

Beginner's Python Cheat Sheet -Testing Your Code

Why test your code?

When you write a function or a class, you can also write tests for that code. Testing proves that your code works as it's supposed to in the situations it's designed to handle, and also when people use your programs in unexpected ways. Writing tests gives you confidence that your code will work correctly as more people begin to use your programs. You can also add new features to your programs and know whether or not you've broken existing behavior by running your tests.

A *unit test* verifies that one specific aspect of your code works as it's supposed to. A *test case* is a collection of unit tests which verify that your code's behavior is correct in a wide variety of situations.

The output in some sections has been trimmed for space.

Testing a function: a passing test

The pytest library provides tools for testing your code. To try it out, we'll create a function that returns a full name. We'll use the function in a regular program, and then build a test case for the function.

A function to test

```
Save this as full_names.py

def get_full_name(first, last):
    """Return a full name."""

full_name = f"{first} {last}"
    return full name.title()
```

Using the function

```
Save this as names.py
```

```
from full_names import get_full_name

janis = get_full_name('janis', 'joplin')
print(janis)

bob = get_full_name('bob', 'dylan')
print(bob)
```

Installing pytest

Installing pytest with pip

```
$ python -m pip install --user pytest
```

Testing a function (cont.)

Building a testcase with one unit test

To build a test case, import the function you want to test. Any functions that begin with test_will be run by pytest. Save this file as test full names.py.

Running the test

Issuing the pytest command tells pytest to run any file beginning with test_. pytest reports on each test in the test case.

The dot after test_full_names.py represents a single passing test. pytest informs us that it ran 1 test in about 0.01 seconds, and that the test passed.

\$ pytest

```
test_full_names.py . [100%] ========= 1 passed in 0.01s =========
```

Testing a function: A failing test

Failing tests are important; they tell you that a change in the code has affected existing behavior. When a test fails, you need to modify the code so the existing behavior still works.

Modifying the function

We'll modify get_full_name() so it handles middle names, but we'll do it in a way that breaks existing behavior.

```
def get_full_name(first, middle, last):
    """Return a full name."""
    full_name = f"{first} {middle} {last}"
    return full name.title()
```

Using the function

```
from full_names import get_full_name

john = get_full_name('john', 'lee', 'hooker')
print(john)

david = get_full_name('david', 'lee', 'roth')
print(david)
```

A failing test (cont.)

Running the test

\$ pytest

When you change your code, it's important to run your existing tests. This will tell you whether the changes you made affect existing behavior.

======= test session starts ========

Fixing the code

When a test fails, the code needs to be modified until the test passes again. Don't make the mistake of rewriting your tests to fit your new code, otherwise your code will break for anyone who's using it the same way it's being used in the failing test.

======== 1 failed in 0.04s ========

Here we can make the middle name optional:

```
def get_full_name(first, last, middle=''):
    """Return a full name."""

    if middle:
        full_name = f"{first} {middle} {last}"
    else:
        full_name = f"{first} {last}"

    return full_name.title()
```

Running the test

Now the test should pass again, which means our original functionality is still intact.

Python Crash Course

A Hands-on, Project-Based Introduction to Programming

ehmatthes.github.io/pcc 3e

Adding new tests

You can add as many unit tests to a test case as you need. To write a new test, add a new function to your test file. If the file grows too long, you can add as many files as you need.

Testing middle names

We've shown that get_full_name() works for first and last names. Let's test that it works for middle names as well.

```
from full names import get full name
def test first last():
    """Test names like Janis Joplin."""
    full name = get full name('janis',
            'joplin')
    assert full name == 'Janis Joplin'
def test middle():
    """Test names like David Lee Roth."""
    full name = get full name('david',
            'roth', 'lee')
    assert full name == 'David Lee Roth'
```

Running the tests

The two dots after test_full_names.py represent two passing tests.

```
======= test session starts ========
collected 2 items
test_full_names.py ..
                                     [100%]
```

======= 2 passed in 0.01s ========

A variety of assert statements

You can use assert statements in a variety of ways, to check for the exact conditions you want to verify.

```
Verify that a==b, or a != b
```

```
assert a == b
assert a != b
```

Verify that x is True, or x is False

```
assert x
assert not x
```

Verify an item is in a list, or not in a list

```
assert my item in my list
assert my item not in my list
```

Running tests from one file

In a growing test suite, you can have multiple test files. Sometimes you'll only want to run the tests from one file. You can pass the name of a file, and pytest will only run the tests in that file:

```
$ pytest test names function.py
```

Testing a class

Testing a class is similar to testing a function, since you'll mostly be testing its methods.

A class to test

```
Save as account.py
 class Account():
     """Manage a bank account."""
    def __init__(self, balance=0):
         """Set the initial balance."""
         self.balance = balance
    def deposit(self, amount):
         """Add to the balance."""
         self.balance += amount
    def withdraw(self, amount):
         """Subtract from the balance."""
```

self.balance -= amount

Building a testcase

For the first test, we'll make sure we can start out with different initial balances. Save this as test accountant.pv.

```
from account import Account
def test initial balance():
    """Default balance should be 0."""
    account = Account()
    assert account.balance == 0
def test deposit():
    """Test a single deposit."""
    account = Account()
    account.deposit(100)
    assert account.balance == 100
```

Running the test

```
$ pytest
======= test session starts ========
collected 2 items
test account.py ..
                                    [100%]
======== 2 passed in 0.01s =========
```

When is it okay to modify tests?

In general you shouldn't modify a test once it's written. When a test fails it usually means new code you've written has broken existing functionality, and you need to modify the new code until all existing tests pass.

If your original requirements have changed, it may be appropriate to modify some tests. This usually happens in the early stages of a project when desired behavior is still being sorted out, and no one is using your code yet.

Using fixtures

A fixture is a resource that's used in multiple tests. When the name of a fixture function is used as an argument to a test function, the return value of the fixture is passed to the test function.

When testing a class, you often have to make an instance of the class. Fixtures let you work with just one instance.

Using fixtures to support multiple tests

```
The instance acc can be used in each new test.
import pytest
from account import Account
@pytest.fixture
def account():
     account = Account()
     return account
```

```
def test initial balance(account):
    """Default balance should be 0."""
   assert account.balance == 0
```

"""Test a single deposit."""

def test deposit(account):

account.deposit(100)

```
assert account.balance == 100
def test withdrawal(account):
    """Test a deposit followed by withdrawal."""
    account.deposit(1 000)
    account.withdraw(100)
    assert account.balance == 900
```

Running the tests

```
$ pytest
======= test session starts ========
collected 3 items
test account.py ...
                                   [100%]
======= 3 passed in 0.01s ========
```

pytest flags

pytest has some flags that can help you run your tests efficiently, even as the number of tests in your project grows.

Stop at the first failing test

```
$ pytest -x
```

Only run tests that failed during the last test run

```
$ pytest --last-failed
```


Beginner's Python Cheat Sheet - Pygame

What is Pygame?

Pygame is a framework for making games using Python. Making games is fun, and it's a great way to expand your programming skills and knowledge. Pygame takes care of many of the lower-level tasks in building games, which lets you focus on the aspects of your game that make it interesting.

Installing Pygame

Installing Pygame with pip

\$ python -m pip install --user pygame

Starting a game

The following code sets up an empty game window, and starts an event loop and a loop that continually refreshes the screen.

An empty game window

```
import sys
import pygame
class AlienInvasion:
    """Overall class to manage the game."""
    def __init__(self):
        pygame.init()
        self.clock = pygame.time.Clock()
        self.screen = pygame.display.set mode(
                (1200, 800))
        pygame.display.set caption(
                "Alien Invasion")
    def run game(self):
        while True:
            for event in pygame.event.get():
                if event.type == pygame.QUIT:
                    svs.exit()
            pygame.display.flip()
            self.clock.tick(60)
if __name__ == '__main__':
    # Make a game instance, and run the game.
    ai = AlienInvasion()
    ai.run game()
```

Starting a game (cont.)

Setting a custom window size

The display.set_mode() function accepts a tuple that defines the screen size.

Setting a custom background color

Colors are defined as a tuple of red, green, and blue values. Each value ranges from 0-255. The fill() method fills the screen with the color you specify, and should be called before you add any other elements to the screen.

Pygame rect objects

Many objects in a game can be treated as simple rectangles, rather than their actual shape. This simplifies code without noticeably affecting game play. Pygame has a rect object that makes it easy to work with game objects.

Getting the screen rect object

We already have a screen object; we can easily access the rect object associated with the screen.

```
self.screen rect = self.screen.get rect()
```

Finding the center of the screen

Rect objects have a center attribute which stores the center point.

```
screen_center = self.screen_rect.center
```

Useful rect attributes

Once you have a rect object, there are a number of attributes that are useful when positioning objects and detecting relative positions of objects. (You can find more attributes in the Pygame documentation. The self variable has been left off for clarity.)

```
# Individual x and y values:
screen_rect.left, screen_rect.right
screen_rect.top, screen_rect.bottom
screen_rect.centerx, screen_rect.centery
screen_rect.width, screen_rect.height
# Tunles
```

```
# Tuples
screen_rect.center
screen rect.size
```

Pygame rect objects (cont.)

Creating a rect object

You can create a rect object from scratch. For example a small rect object that's filled in can represent a bullet in a game. The Rect() class takes the coordinates of the upper left corner, and the width and height of the rect. The draw.rect() function takes a screen object, a color, and a rect. This function fills the given rect with the given color.

```
bullet_rect = pygame.Rect(100, 100, 3, 15) color = (100, 100, 100)
```

pygame.draw.rect(screen, color, bullet rect)

Working with images

Many objects in a game are images that are moved around the screen. It's easiest to use bitmap (.bmp) image files, but you can also configure your system to work with jpg, png, and gif files as well.

Loading an image

```
ship = pygame.image.load('images/ship.bmp')
```

Getting the rect object from an image

```
ship rect = ship.get rect()
```

Positioning an image

With rects, it's easy to position an image wherever you want on the screen, or in relation to another object. The following code positions a ship at the bottom center of the screen, by matching the midbottom of the ship with the midbottom of the screen.

```
ship rect.midbottom = screen rect.midbottom
```

Drawing an image to the screen

Once an image is loaded and positioned, you can draw it to the screen with the blit() method. The blit() method acts on the screen object, and takes the image object and image rect as arguments.

```
# Draw ship to screen.
screen.blit(ship, ship_rect)
```

Transforming an image

The transform module allows you to make changes to an image such as rotation and scaling.

Python Crash Course

A Hands-on, Project-Based Introduction to Programming

ehmatthes.github.io/pcc 3e

Working with images (cont.)

The blitme() method

Game objects such as ships are often written as classes. Then a blitme() method is usually defined, which draws the object to the screen.

```
def blitme(self):
    """Draw ship at current location."""
    self.screen.blit(self.image, self.rect)
```

Responding to keyboard input

Pygame watches for events such as key presses and mouse actions. You can detect any event you care about in the event loop, and respond with any action that's appropriate for your game.

Responding to key presses

Pygame's main event loop registers a KEYDOWN event any time a key is pressed. When this happens, you can check for specific keys.

```
for event in pygame.event.get():
    if event.type == pygame.KEYDOWN:
        if event.key == pygame.K_RIGHT:
            ship_rect.x += 1
        elif event.key == pygame.K_LEFT:
            ship_rect.x -= 1
        elif event.key == pygame.K_SPACE:
            ship.fire_bullet()
        elif event.key == pygame.K_q:
            sys.exit()
```

Responding to released keys

When the user releases a key, a KEYUP event is triggered.

The game is an object

In the overall structure shown here (under Starting a Game), the entire game is written as a class. This makes it possible to write programs that play the game automatically, and it also means you can build an arcade with a collection of games.

Pygame documentation

The Pygame documentation is really helpful when building your own games. The home page for the Pygame project is at pygame.org/, and the home page for the documentation is at pygame.org/docs/.

The most useful part of the documentation are the pages about specific parts of Pygame, such as the Rect() class and the sprite module. You can find a list of these elements at the top of the help pages.

Responding to mouse events

Pygame's event loop registers an event any time the mouse moves, or a mouse button is pressed or released.

Responding to the mouse button

```
for event in pygame.event.get():
    if event.type == pygame.MOUSEBUTTONDOWN:
        ship.fire bullet()
```

Finding the mouse position

The mouse position is returned as a tuple.

```
mouse pos = pygame.mouse.get pos()
```

Clicking a button

You might want to know if the cursor is over an object such as a button. The rect.collidepoint() method returns True when a point overlaps a rect object.

```
if button_rect.collidepoint(mouse_pos):
    start_game()
```

Hiding the mouse

pygame.mouse.set_visible(False)

Pygame groups

Pygame has a Group class which makes working with a group of similar objects easier. A group is like a list, with some extra functionality that's helpful when building games.

Making and filling a group

An object that will be placed in a group must inherit from Sprite.

```
from pygame.sprite import Sprite, Group
```

```
class Bullet(Sprite):
    ...
    def draw_bullet(self):
     ...
    def update(self):
     ...

bullets = Group()

new_bullet = Bullet()
bullets.add(new_bullet)
```

Looping through the items in a group

The sprites() method returns all the members of a group.

```
for bullet in bullets.sprites():
    bullet.draw bullet()
```

Calling update() on a group

Calling update() on a group automatically calls update() on each member of the group.

```
bullets.update()
```

Pygame groups (cont.)

Removing an item from a group

It's important to delete elements that will never appear again in the game, so you don't waste memory and resources.

```
bullets.remove(bullet)
```

Detecting collisions

You can detect when a single object collides with any member of a group. You can also detect when any member of one group collides with a member of another group.

Collisions between a single object and a group

The spritecollideany() function takes an object and a group, and returns True if the object overlaps with any member of the group.

```
if pygame.sprite.spritecollideany(ship, aliens):
    ships left -= 1
```

Collisions between two groups

The sprite.groupcollide() function takes two groups, and two booleans. The function returns a dictionary containing information about the members that have collided. The booleans tell Pygame whether to delete the members of either group that have collided.

```
score += len(collisions) * alien point value
```

Rendering text

You can use text for a variety of purposes in a game. For example you can share information with players, and you can display a score.

Displaying a message

The following code defines a message, then a color for the text and the background color for the message. A font is defined using the default system font, with a font size of 48. The font.render() function is used to create an image of the message, and we get the rect object associated with the image. We then center the image on the screen and display it.

Beginner's Python Cheat Sheet -Matplotlib

What is Matplotlib?

Data visualization involves exploring data through visual representations. The Matplotlib library helps you make visually appealing representations of the data you're working with. Matplotlib is extremely flexible; these examples will help you get started with a few simple visualizations.

Many newer plotting libraries are wrappers around Matplotlib, and understanding Matplotlib will help you use those libraries more effectively as well.

Installing Matplotlib

Installing Matplotlib with pip

\$ python -m pip install --user matplotlib

Line graphs and scatter plots

Making a line graph

The fig object represents the entire figure, or collection of plots; ax represents a single plot in the figure. This convention is used even when there's only one plot in the figure.

```
import matplotlib.pyplot as plt
x_values = [0, 1, 2, 3, 4, 5]
squares = [0, 1, 4, 9, 16, 25]
fig, ax = plt.subplots()
ax.plot(x_values, squares)
plt.show()
```

Making a scatter plot

scatter() takes a list of x and y values; the s=10 argument controls the size of each point.

```
import matplotlib.pyplot as plt

x_values = list(range(1000))
squares = [x**2 for x in x_values]

fig, ax = plt.subplots()
ax.scatter(x_values, squares, s=10)
plt.show()
```

Customizing plots

Plots can be customized in a wide variety of ways. Just about any element of a plot can be modified.

Using built-in styles

Matplotlib comes with a number of built-in styles, which you can use with one additional line of code. The style must be specified before you create the figure.

```
import matplotlib.pyplot as plt

x_values = list(range(1000))
squares = [x**2 for x in x_values]

plt.style.use('seaborn-v0_8')
fig, ax = plt.subplots()
ax.scatter(x_values, squares, s=10)

plt.show()
```

Seeing available styles

You can see all available styles on your system. This can be done in a terminal session.

```
>>> import matplotlib.pyplot as plt
>>> plt.style.available
['Solarize_Light2', '_classic_test_patch', ...
```

Adding titles and labels, and scaling axes

import matplotlib.pyplot as plt

```
x_values = list(range(1000))
squares = [x**2 for x in x_values]

# Set overall style to use, and plot data.
plt.style.use('seaborn-v0_8')
fig, ax = plt.subplots()
ax.scatter(x_values, squares, s=10)

# Set chart title and label axes.
ax.set_title('Square Numbers', fontsize=24)
ax.set_xlabel('Value', fontsize=14)
ax.set_ylabel('Square of Value', fontsize=14)
```

```
# Set scale of axes, and size of tick labels.
ax.axis([0, 1100, 0, 1_100_000])
ax.tick_params(axis='both', labelsize=14)
```

plt.show()

Using a colormap

A colormap varies the point colors from one shade to another, based on a certain value for each point. The value used to determine the color of each point is passed to the c argument, and the cmap argument specifies which colormap to use.

Customizing plots (cont.)

Emphasizing points

You can plot as much data as you want on one plot. Here we replot the first and last points larger to emphasize them.

Removing axes

You can customize or remove axes entirely. Here's how to access each axis, and hide it.

```
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
```

Setting a custom figure size

You can make your plot as big or small as you want by using the figsize argument. The dpi argument is optional; if you don't know your system's resolution you can omit the argument and adjust the figsize argument accordingly.

Saving a plot

The Matplotlib viewer has a save button, but you can also save your visualizations programmatically by replacing plt.show() with plt.savefig(). The bbox_inches argument reduces the amount of whitespace around the figure.

```
plt.savefig('squares.png', bbox inches='tight')
```

Online resources

The matplotlib gallery and documentation are at matplotlib.org/. Be sure to visit the Examples, Tutorials, and User guide sections.

Python Crash Course

A Hands-on, Project-Based Introduction to Programming

ehmatthes.github.io/pcc 3e

Multiple plots

You can make as many plots as you want on one figure. When you make multiple plots, you can emphasize relationships in the data. For example you can fill the space between two sets of data.

Plotting two sets of data

Here we use ax.scatter() twice to plot square numbers and cubes on the same figure.

```
import matplotlib.pyplot as plt
x values = list(range(11))
squares = [x**2 \text{ for } x \text{ in } x \text{ values}]
cubes = [x**3 \text{ for } x \text{ in } x \text{ values}]
plt.style.use('seaborn-v0 8')
fig, ax = plt.subplots()
ax.scatter(x values, squares, c='blue', s=10)
ax.scatter(x values, cubes, c='red', s=10)
plt.show()
```

Filling the space between data sets

The fill between() method fills the space between two data sets. It takes a series of x-values and two series of y-values. It also takes a facecolor to use for the fill, and an optional alpha argument that controls the color's transparency.

```
ax.fill between(x values, cubes, squares,
        facecolor='blue', alpha=0.25)
```

Working with dates and times

Many interesting data sets have a date or time as the x value. Python's datetime module helps you work with this kind of data.

Generating the current date

The datetime.now() function returns a datetime object representing the current date and time.

```
from datetime import datetime as dt
today = dt.now()
date string = today.strftime('%m/%d/%Y')
print(date string)
```

Generating a specific date

You can also generate a datetime object for any date and time you want. The positional order of arguments is year, month, and day. The hour, minute, second, and microsecond arguments are optional.

```
from datetime import datetime as dt
new years = dt(2023, 1, 1)
fall_equinox = dt(year=2023, month=9, day=22)
```

Working with dates and times (cont.)

Datetime formatting arguments

The strptime() function generates a datetime object from a string, and the strftime() method generates a formatted string from a datetime object. The following codes let you work with dates exactly as you need to.

```
Weekday name, such as Monday
%В
      Month name, such as January
%m
      Month, as a number (01 to 12)
%d
      Day of the month, as a number (01 to 31)
%Y
      Four-digit year, such as 2021
%y
      Two-digit year, such as 21
%Н
      Hour, in 24-hour format (00 to 23)
%I
      Hour, in 12-hour format (01 to 12)
%p
      AM or PM
%М
      Minutes (00 to 59)
%S
      Seconds (00 to 61)
```

Converting a string to a datetime object

```
new years = dt.strptime('1/1/2023', '%m/%d/%Y')
```

Converting a datetime object to a string

```
ny string = new years.strftime('%B %d, %Y')
print(ny string)
```

Plotting high temperatures

The following code creates a list of dates and a corresponding list of high temperatures. It then plots the high temperatures, with the date labels displayed in a specific format.

```
from datetime import datetime as dt
import matplotlib.pyplot as plt
from matplotlib import dates as mdates
dates = [
   dt(2023, 6, 21), dt(2023, 6, 22),
   dt(2023, 6, 23), dt(2023, 6, 24),
highs = [56, 57, 57, 64]
plt.style.use('seaborn-v0 8')
fig, ax = plt.subplots()
ax.plot(dates, highs, c='red')
ax.set_title("Daily High Temps", fontsize=24)
ax.set ylabel("Temp (F)", fontsize=16)
x axis = ax.get xaxis()
```

mdates.DateFormatter('%B %d %Y')

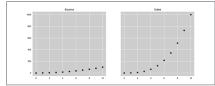
x axis.set major formatter(

fig.autofmt_xdate()

plt.show()

Multiple plots in one figure

You can include as many individual graphs in one figure as vou want.


Sharing an x-axis

The following code plots a set of squares and a set of cubes on two separate graphs that share a common x-axis. The plt. subplots() function returns a figure object and a tuple of axes. Each set of axes corresponds to a separate plot in the figure. The first two arguments control the number of rows and columns generated in the figure.

```
import matplotlib.pyplot as plt
x values = list(range(11))
squares = [x**2 \text{ for } x \text{ in } x \text{ values}]
cubes = [x**3 \text{ for } x \text{ in } x \text{ values}]
fig, axs = plt.subplots(2, 1, sharex=True)
axs[0].scatter(x values, squares)
axs[0].set title('Squares')
axs[1].scatter(x values, cubes, c='red')
axs[1].set_title('Cubes')
plt.show()
```

Sharing a y-axis

```
To share a y-axis, use the sharey=True argument.
 import matplotlib.pyplot as plt
 x values = list(range(11))
 squares = [x**2 \text{ for } x \text{ in } x \text{ values}]
 cubes = [x**3 \text{ for } x \text{ in } x \text{ values}]
 plt.style.use('seaborn-v0 8')
 fig, axs = plt.subplots(1, 2, sharey=True)
 axs[0].scatter(x values, squares)
 axs[0].set title('Squares')
 axs[1].scatter(x values, cubes, c='red')
 axs[1].set title('Cubes')
 plt.show()
```


Weekly posts about all things Python

mostlypython.substack.com

Beginner's Python Cheat Sheet - Plotly

What is Plotly?

Data visualization involves exploring data through visual representations. Plotly helps you make visually appealing representations of the data you're working with. Plotly is particularly well suited for visualizations that will be presented online, because it supports interactive elements.

Plotly express lets you see a basic version of your plot with just a few lines of code. Once you know the plot works for your data, you can refine the style of your plot.

Installing Plotly

Plotly Express requires the pandas library.

Installing Plotly with pip

```
$ python -m pip install --user plotly
$ python -m pip install --user pandas
```

Line graphs, scatter plots, and bar graphs

To make a plot with Plotly Express, you specify the data and then create a fig object. The call to fig.show() opens the plot in a new browser tab. You have a plot in just two lines of code!

Making a line graph

Plotly generates JavaScript code to render the plot file. If you're curious to see the code, open your browser's inspector tool when the plot opens.

```
import plotly.express as px

# Define the data.
x_values = list(range(11))
squares = [x**2 for x in x_values]

# Visualize the data.
fig = px.line(x=x_values, y=squares)
fig.show()
```

Making a scatter plot

To make a scatter plot, change line() to scatter(). This is the point of Plotly Express; you can easily see your data in a variety of ways before committing to a more specific styling options.

```
fig = px.scatter(x=x values, y=squares)
```

Line graphs, scatter plots, and bar graphs (cont.)

Making a bar graph

```
fig = px.bar(x=x values, y=squares)
```

Initial customizations

The functions that generate plots also accept parameters that specify titles, labels, and other formatting directives for your visualizations.

Adding a title and axis labels

The title is a string. The labels dictionary lets you specify which aspects of the plot will have custom labels.

More customizations in the plotting call

fig.show()

Plotly Express was designed to give you as much control as possible, using as little code as possible. Here's a small example of how much can be customized within a single plotting call.

Most of these arguments can be single values, or sequences that match the size of the overall dataset.

```
import plotly.express as px
x_values = list(range(11))
squares = [x**2 for x in x_values]

title = "Square Numbers"
labels = {'x': 'Value', 'y': 'Square of Value'}

fig = px.scatter(
    x=x_values,
    y=squares,
    title=title,
    labels=labels,
    size=squares,
    color=squares,
    opacity=0.5,
    width=1200,
    height=800,
)
```

Further customizations

You can make a wide variety of further customizations to a plot using the update methods. For example, update_layout() gives you control of many formatting options.

Using update layout()

Here the update_layout() method is used to change the font sizes, and change the tick mark spacing on the x-axis.

```
import plotly.express as px
x values = list(range(11))
squares = [x**2 \text{ for } x \text{ in } x \text{ values}]
title = "Square Numbers"
labels = {'x': 'Value', 'y': 'Square of Value'}
fig = px.scatter(
    x=x_values,
    y=squares,
fig.update layout(
    title font size=30,
    xaxis title font size=24,
    xaxis dtick=1,
    xaxis tickfont size=16,
    yaxis title font size=24,
    yaxis_tickfont_size=16,
fig.show()
```

Plotly Express documentation

Plotly's documentation is extensive and well-organized. There's a lot of it, though, so it can be hard to know where to begin. Start with an overview of Plotly Express at plotly.com/python/plotly-express. This page itself is helpful; make sure you also click on the documentation for the kinds of plots you use most often. These lead to pages full of discussions and examples.

Also see the Python API reference for plotly at plotly. com/python-api-reference. This is a reference page showing all the different kinds of plots you can make with Plotly. If you click on any of the links, you can see all the arguments that can be included in plotting calls.

Python Crash Course

A Hands-on, Project-Based Introduction to Programming

ehmatthes.github.io/pcc 3e

Using a predefined theme

A theme is a set of styles applied to a visualization in Plotly. Themes are implemented with templates.

Using a theme

Viewing all available themes

Adding traces to a Plotly Express plot

In Plotly, a trace is a dataset that can be plotted on a chart. You can add traces to existing Plotly Express plots. Additional plots need to be specified using the graph_objects module.

Using fig.add trace()

Using Subplots

It's often useful to have multiple plots share the same axes. This is done using the subplots module.

Adding subplots to a figure

To use the subplots module, make a figure to hold all the charts that will be made. Then use the add_trace() method to add each data series to the overall figure.

All individual plots need to be made using the graph_objects module.

```
from plotly.subplots import make subplots
import plotly.graph objects as go
x values = list(range(11))
squares = [x**2 \text{ for } x \text{ in } x \text{ values}]
cubes = [x**3 for x in x values]
# Make two subplots, sharing a y-axis.
fig = make subplots(rows=1, cols=2,
        shared yaxes=True)
# Start by plotting the square numbers.
squares trace = go.Scatter(x=x values,
        v=squares)
fig.add_trace(squares_trace, row=1, col=1)
# Add a new trace for the cubes.
cubes trace = go.Scatter(x=x values, y=cubes)
fig.add trace(cubes trace, row=1, col=2)
title = "Squares and Cubes"
fig.update layout(title text=title)
fig.show()
```

Further documentation

After exploring the Plotly Express documenation, look at Styling Plotly Express Figures in Python, at plotly.com/python/styling-plotly-express. This explains all the ways you can style and format plots. After that, the Python Figure Reference (plotly.com/python/reference/index) will be much more useful. It shows you all the possible settings you can change, with examples for each.

Make sure you read about "magic underscores" in Plotly, at plotly.com/python/creating-and-updating-figures. They take a little getting used to, but once you're familiar with the syntax they make it much easier to specify exactly the settings you want to modify.

If you're using subplots, read Subplots in Python at plotly. com/python/subplots. Also look at Graph Objects in Python at plotly.com/python/graph-objects, which are used to make individual plots in a subplot.

Plotting global datasets

Plotly has a variety of mapping tools. For example, if you have a set of points represented by latitude and longitude, you can create a scatter plot of those points overlaying a map.

The scattergeo chart type

import plotly.express as px

Here's a map showing the location of three of the higher peaks in North America. If you hover over each point, you'll see its location and the name of the mountain.

```
# Points in (lat, lon) format.
peak coords = [
    (63.069, -151.0063),
    (60.5671, -140.4055),
    (46.8529, -121.7604),
# Make matching lists of lats, lons,
   and labels.
lats = [pc[0] for pc in peak coords]
lons = [pc[1] for pc in peak coords]
peak names = [
    "Denali",
    "Mt Logan",
    "Mt Rainier"
elevations = [20 000, 18 000, 14 000]
# Generate initial map.
title = "Selected High Peaks"
fig = px.scatter geo(
   lat=lats.
   lon=lons,
   title=title,
    projection="natural earth",
   text=peak names,
    size=elevations,
    scope="north america",
# Customize formatting options.
fig.update layout(titlefont size=24)
fig.update traces(
   textposition="middle right",
   textfont size=18,
fig.show()
```


Beginner's Python Cheat Sheet - Django

What is Django?

Django is a web framework that helps you build interactive websites using Python. With Django you define the kind of data your site will work with, and the ways your users can work with that data.

Django works well for tiny projects, and just as well for sites with millions of users.

Installing Django

It's best to install Django to a virtual environment, where your project can be isolated from your other Python projects. Most commands assume you're working in an active virtual environment.

Create a virtual environment

\$ python -m venv 11 env

Activate the environment (macOS and Linux)

\$ source ll env/bin/activate

Activate the environment (Windows)

> ll_env\Scripts\activate

Install Django to the active environment

(11_env)\$ pip install Django

Creating a project

To start we'll create a new project, create a database, and start a development server.

Create a new project

Make sure to include the dot at the end of this command.

\$ django-admin startproject ll_project .

Create a database

\$ python manage.py migrate

View the project

After issuing this command, you can view the project at http://localhost:8000/.

\$ python manage.py runserver

Create a new app

A Django project is made up of one or more apps.

\$ python manage.py startapp learning_logs

Working with models

The data in a Django project is structured as a set of models. Each model is represented by a class.

Defining a model

To define the models for your app, modify the models.py file that was created in your app's folder. The __str__() method tells Django how to represent data objects based on this model.

Activating a model

To use a model the app must be added to the list INSTALLED_APPS, which is stored in the project's settings.py file.

```
INSTALLED_APPS = [
    # My apps.
    'learning_logs',

# Default Django apps.
    'django.contrib.admin',
```

Migrating the database

The database needs to be modified to store the kind of data that the model represents. You'll need to run these commands every time you create a new model, or modify an existing model.

```
$ python manage.py makemigrations learning_logs
$ python manage.py migrate
```

Creating a superuser

A superuser is a user account that has access to all aspects of the project.

\$ python manage.py createsuperuser

Registering a model

You can register your models with Django's admin site, which makes it easier to work with the data in your project. To do this, modify the app's admin.py file. View the admin site at http://localhost:8000/admin/. You'll need to log in using a superuser account.

```
from django.contrib import admin
from .models import Topic
admin.site.register(Topic)
```

Building a simple home page

Users interact with a project through web pages, and a project's home page can start out as a simple page with no data. A page usually needs a URL, a view, and a template.

Mapping a project's URLs

The project's main urls.py file tells Django where to find the urls.py files associated with each app in the project.

```
from django.contrib import admin
from django.urls import path, include
urlpatterns = [
    path('admin/', admin.site.urls),
    path('', include('learning_logs.urls')),
]
```

Mapping an app's URLs

An app's urls.py file tells Django which view to use for each URL in the app. You'll need to make this file yourself, and save it in the app's folder.

```
from django.urls import path
from . import views

app_name = 'learning_logs'
urlpatterns = [
    # Home page.
    path('', views.index, name='index'),
]
```

Writing a simple view

A view takes information from a request and sends data to the browser, often through a template. View functions are stored in an app's views.py file. This simple view function doesn't pull in any data, but it uses the template index.html to render the home page.

Online resources

The documentation for Django is available at docs.djangoproject.com/. The Django documentation is thorough and user-friendly, so check it out!

Python Crash Course

Building a simple home page (cont.)

Writing a simple template

A template sets up the structure for a page. It's a mix of html and template code, which is like Python but not as powerful. Most of the logic for your project should be written in .py files, but some logic is appropriate for templates.

Make a folder called templates/ inside the project folder. Inside the templates/ folder make another folder with the same name as the app. This is where the template files should be saved. The home page template will be saved as learning_logs/templates/learning_logs/index.html.

```
Learning Log
Learning Log helps you keep track of your learning, for any topic you're learning about.
```

Template Inheritance

Many elements of a web page are repeated on every page in the site, or every page in a section of the site. By writing one parent template for the site, and one for each section, you can easily modify the look and feel of your entire site.

The parent template

The parent template defines the elements common to a set of pages, and defines blocks that will be filled by individual pages.

```
 <a href="{% url 'learning_logs:index' %}">
    Learning Log
    </a>

{% block content %}{% endblock content %}
```

The child template

The child template uses the {% extends %} template tag to pull in the structure of the parent template. It then defines the content for any blocks defined in the parent template.

```
{% extends 'learning_logs/base.html' %}

{% block content %}

    Learning Log helps you keep track
    of your learning, for any topic you're
    learning about.

{% endblock content %}
```

Template indentation

Python code is usually indented by four spaces. In templates you'll often see two spaces used for indentation, because elements tend to be nested more deeply in templates.

Another model

A new model can use an existing model. The ForeignKey attribute establishes a connection between instances of the two related models. Make sure to migrate the database after adding a new model to your app.

Defining a model with a foreign key

Building a page with data

Most pages in a project need to present data that's specific to the current user.

URL parameters

A URL often needs to accept a parameter telling it what data to access from the database. The URL pattern shown here looks for the ID of a specific topic and assigns it to the parameter topic_id.

Using data in a view

The view uses a parameter from the URL to pull the correct data from the database. In this example the view is sending a context dictionary to the template, containing data that should be displayed on the page. You'll need to import any model you're using.

Restarting the development server

If you make a change to your project and the change doesn't seem to have any effect, try restarting the server:

\$ python manage.py runserver

Building a page with data (cont.)

Using data in a template

The data in the view function's context dictionary is available within the template. This data is accessed using template variables, which are indicated by doubled curly braces.

The vertical line after a template variable indicates a filter. In this case a filter called date formats date objects, and the filter linebreaks renders paragraphs properly on a web page.

```
{% extends 'learning logs/base.html' %}
{% block content %}
 Topic: {{ topic }}
 Entries:
 <l
 {% for entry in entries %}
   <
   >
     {{ entry.date added | date: 'M d, Y H:i' }}
   < q>>
     {{ entry.text|linebreaks }}
   {% empty %}
   There are no entries yet.
 {% endfor %}
 {% endblock content %}
```

The Django shell

You can explore the data in your project from the command line. This is helpful for developing queries and testing code snippets.

Start a shell session

\$ python manage.py shell

Access data from the project

```
>>> from learning_logs.models import Topic
>>> Topic.objects.all()
[<Topic: Chess>, <Topic: Rock Climbing>]
>>> topic = Topic.objects.get(id=1)
>>> topic.text
'Chess'
>>> topic.entry_set.all()
<QuerySet [<Entry: In the opening phase...>]>
```


Beginner's Python Cheat Sheet -Django, Part 2

Users and forms

Most web applications need to let users make accounts, so they can create and work with their own data. Some of this data may be private, and some may be public. Django's forms allow users to enter and modify their data.

User accounts

User accounts are handled by a dedicated app which we'll call accounts. Users need to be able to register, log in, and log out. Django automates much of this work for you.

Making an accounts app

After making the app, be sure to add 'accounts' to INSTALLED_APPS in the project's settings.py file.

\$ python manage.py startapp accounts

Including URLs for the accounts app

Add a line to the project's urls.py file so the accounts app's URLs are included in the project.

```
from django.contrib import admin
from django.urls import path, include

urlpatterns = [
    path('admin/', admin.site.urls),
    path('accounts/', include('accounts.urls')),
    path('', include('learning_logs.urls')),
]
```

Using forms in Django

There are a number of ways to create forms and work with them. You can use Django's defaults, or completely customize your forms. For a simple way to let users enter data based on your models, use a ModelForm. This creates a form that allows users to enter data that will populate the fields on a model.

The register view on the back of this sheet shows a simple approach to form processing. If the view doesn't receive data from a form, it responds with a blank form. If it receives POST data from a form, it validates the data and then saves it to the database.

User accounts (cont.)

Defining the URLs

Users will need to be able to log in, log out, and register. Make a new urls.py file in the users app folder.

The login template

The login view is provided by default, but you need to provide your own login template. The template shown here displays a simple login form, and provides basic error messages. Make a templates/folder in the accounts/folder, and then make a registration/folder in the templates/folder. Save this file as login.html. The path should be accounts/templates/registration/login.html.

The tag {% csrf_token %} helps prevent a common type of attack with forms. The {{ form.as_div }} element displays the default login form in an appropriate format.

```
{% extends "learning_logs/base.html" %}

{% block content %}

{% if form.errors %}

   Your username and password didn't match.
   Please try again.

{% endif %}

<form action="{% url 'users:login'
   method="post" %}">

{% csrf token %}
   {{ form.as_div }}
   <button name="submit">Log in</button>

</form>

{% endblock content %}
```

The logout redirect setting in settings.py

This setting tells Django where to send users after they log out.

```
LOGOUT_REDIRECT_URL = 'learning_logs:index'
```

User accounts (cont.)

Showing the current login status

You can modify the base.html template to show whether the user is currently logged in, and to provide a link to the login and logout pages. Django makes a user object available to every template, and this template takes advantage of this object.

Testing for user.is_authenticated in a template allows you to serve specific content to users depending on whether they have logged in or not. The {{ user.username }} property allows you to greet users who have logged in. Users who haven't logged in see links to register or log in.

```
>
  <a href="{% url 'learning logs:index' %}">
   Learning Log
  </a>
  {% if user.is authenticated %}
   Hello, {{ user.username }}.
    <a href="{% url 'accounts:logout' %}">
    </a>
  {% else %}
    <a href="{% url 'accounts:register' %}">
     Register
    </a> -
    <a href="{% url 'accounts:login' %}">
     Log in
   </a>
  {% endif %}
{% block content %}{% endblock content %}
```

The logout form

Django handles logout functionality, but you need to give users a simple form to submit that logs them out. Make sure to add the LOGOUT REDIRECT URL to settings.py.

```
{% if user.is_authenticated %}
  <form action="{% url 'accounts:logout' %}"
    method='post'>
        {% csrf_token %}
        <button name='submit'>Log out</button>
        </form>
{% endif %}
```

Python Crash Course

User accounts (cont.)

The register view

The register view needs to display a blank registration form when the page is first requested, and then process completed registration forms.

A successful registration logs the user in and redirects to the home page. An invalid form displays the registration page again, with an appropriate error message.

```
from django.shortcuts import render, redirect
from django.contrib.auth import login
from django.contrib.auth.forms import \
        UserCreationForm
def register(request):
    """Register a new user."""
    if request.method != 'POST':
        # Display blank registration form.
        form = UserCreationForm()
    else:
        # Process completed form.
        form = UserCreationForm(
                data=request.POST)
        if form.is valid():
            new user = form.save()
            # Log in, redirect to home page.
            login(request, new_user)
            return redirect(
                    'learning logs:index')
    # Display a blank or invalid form.
    context = {'form': form}
    return render(request,
        'registration/register.html', context)
```

Styling your project

The django-bootstrap5 app allows you to use the Bootstrap library to make your project look visually appealing. The app provides tags that you can use in your templates to style individual elements on a page. Learn more at django-bootstrap5.readthedocs.io/.

Deploying your project

Platform.sh lets you push your project to a live server, making it available to anyone with an internet connection. Platform.sh offers a free service level, which lets you learn the deployment process without any commitment.

You'll need to install a set of Platform.sh command line tools, and use Git to track the state of your project. See https://platform.sh/marketplace/django for more information.

User accounts (cont.)

The register template

The register.html template shown here displays the registration form in a simple format.

```
{% extends 'learning_logs/base.html' %}

{% block content %}

<form action="{% url 'accounts:register'
    method='post' %}">

    {% csrf_token %}
    {{ form.as_div }}

    <button name='submit'>Register</button>

    </form>

{% endblock content %}
```

Connecting data to users

Users will create some data that belongs to them. Any model that should be connected directly to a user needs a field connecting instances of the model to a specific user.

Making a topic belong to a user

Only the highest-level data in a hierarchy needs to be directly connected to a user. To do this import the User model, and add it as a foreign key on the data model.

After modifying the model you'll need to migrate the database. You'll need to choose a user ID to connect each existing instance to.

Querying data for the current user

def __str__(self):
 return self.text

In a view, the request object has a user attribute. You can use this attribute to query for the user's data. The filter() method shown here pulls the data that belongs to the current user.

Connecting data to users (cont.)

Restricting access to logged-in users

Some pages are only relevant to registered users. The views for these pages can be protected by the @login_required decorator. Any view with this decorator will automatically redirect non-logged in users to an appropriate page. Here's an example views.py file.

Setting the redirect URL

The @login_required decorator sends unauthorized users to the login page. Add the following line to your project's settings.py file so Django will know how to find your login page.

```
LOGIN URL = 'accounts:login'
```

Preventing inadvertent access

Some pages serve data based on a parameter in the URL. You can check that the current user owns the requested data, and return a 404 error if they don't. Here's an example view.

```
from django.http import Http404
--snip--
@login_required
def topic(request, topic_id):
    """Show a topic and all its entries."""
    topic = Topics.objects.get(id=topic_id)
    if topic.owner != request.user:
        raise Http404
--snip--
```

Using a form to edit data

If you provide some initial data, Django generates a form with the user's existing data. Users can then modify and save their data.

Creating a form with initial data

The instance parameter allows you to specify initial data for a form.

```
form = EntryForm(instance=entry)
```

Modifying data before saving

The argument commit=False allows you to make changes before writing data to the database.

```
new_topic = form.save(commit=False)
new_topic.owner = request.user
new topic.save()
```


Beginner's Python Cheat Sheet - Git

Version Control

Version control software allows you to take snapshots of a project whenever it's in a working state. If your project stops working, you can roll back to the most recent working version of the project.

Version control is important because it frees you to try new ideas with your code, without worrying that you'll break your overall project. A distributed version control system like Git is also really useful in working collaboratively with other developers.

Installing Git

You can find an installer for your system at git-scm.com/. Before doing that, check if Git is already on your system:

```
$ git --version
git version 2.30.1 (Apple Git-130)
```

Configuring Git

You can configure Git so some of its features are easier to use. The editor setting controls which editor Git will open when it needs you to enter text.

See all global settings

\$ git config --list

Set username

\$ git config --global user.name "eric"

Set email

\$ git config --global user.email
 "eric@example.com"

Set editor

\$ git config --global core.editor "nano"

Ignoring files

To ignore files make a file called ".gitignore", with a leading dot and no extension. Then list the directories and files you want to ignore.

Ignore directories

```
__pycache__/
my_venv/
```

Ignoring files (cont.)

Ignore specific files

```
.DS_Store secret_key.txt
```

Ignore files with specific extensions

*.pyc

Initializing a repository

All the files Git uses to manage the repository are located in the hidden directory .git. Don't delete that directory, or you'll lose your project's history.

Initialize a repository

```
$ git init
Initialized empty Git repository in
   my project/.git/
```

Checking the status

It's important to check the status of your project often, even before the first commit. This will tell you which files Git is planning to track.

Check status

```
$ git status
On branch main
No commits yet
Untracked files:
    .gitignore
    hello.py
```

Adding files

You'll need to add the files you want Git to keep track of.

Add all files not in .gitignore

\$ git add .

Add a single file

\$ git add hello.py

Making a commit

When making a commit, the -am flag commits all files that have been added, and records a commit message. (It's a good idea to check the status before making each commit.)

Make a commit with a message

```
$ git commit -am "Started project, everything
    works."
2 files changed, 7 insertions(+)
create mode 100644 .gitignore
create mode 100644 hello.py
```

Checking the log

Git logs all the commits you've made. Checking the log is helpful for understanding the history of your project.

Check log in default format

Check log in simpler format

```
$ git log --oneline
dc2ebd6 (HEAD -> main) Greets uer.
bf55851 Started project, everything works.
```

Exploring history

You can explore a project's history by visiting specific commit hashes, or by referencing the project's HEAD. HEAD refers to the most recent commit of the current branch.

Visit a specific commit

\$ git checkout b9aedbb

Return to most recent commit of main branch

\$ git checkout main

Visit the previous commit

\$ git checkout HEAD^

Visit an earlier commit

\$ git checkout HEAD^^^

Visit the previous commit

\$ git checkout HEAD~1

Vist an earlier commit

\$ git checkout HEAD~3

Learning more

You can learn more about using Git with the command git help. You can also go to Stack Overflow and search for git, and then sort the questions by number of votes.

Python Crash Course

A Hands-on, Project-Based Introduction to Programming

ehmatthes.github.io/pcc_3e

Branching

When the work you're about to do will involve multiple commits, you can create a branch where you'll do this work. The changes you make will be kept away from your main branch until you choose to merge them. It's common to delete a branch after merging back to the main branch.

Branches can also be used to maintain independent releases of a project.

Make a new branch and switch to it

\$ git checkout -b new_branch_name
Switched to a new branch 'new_branch_name'

See all branches

- \$ git branch
 main
- * new branch name

Switch to a different branch

\$ git checkout main
Switched to branch 'main'

Merge changes

\$ git merge new_branch_name
Updating b9aedbb..5e5130a
Fast-forward
hello.py | 5 +++++
1 file changed, 5 insertions(+)

Delete a branch

\$ git branch -D new_branch_name
Deleted branch new_branch_name
 (was 5e5130a).

Move last commit to new branch

- \$ git branch new branch name
- \$ git reset --hard HEAD~1
- \$ git checkout new branch name

Undoing recent changes

One of the main points of version control is to allow you to go back to any working state of your project and start over from there.

Get rid of all uncommitted changes

\$ git checkout .

Get rid of all changes since a specific commit

\$ git reset --hard b9aedbb

Create new branch starting at a previous commit

\$ git checkout -b branch_name b9aedbb

Stashing changes

If you want to save some changes without making a commit, you can stash your changes. This is useful when you want to revisit the most recent commit without making a new commit. You can stash as many sets of changes as you need.

Stash changes since last commit

```
$ git stash
Saved working directory and index state
    WIP on main: f6f39a6...
```

See stashed changes

```
$ git stash list
stash@{0}: WIP on main: f6f39a6...
stash@{1}: WIP on main: f6f39a6...
...
```

Reapply changes from most recent stash

\$ git stash pop

Reapply changes from a specific stash

\$ git stash pop --index 1

Clear all stashed changes

\$ git stash clear

Comparing commits

It's often helpful to compare changes across different states of a project.

See all changes since last commit

\$ git diff

See changes in one file since last commit

\$ git diff hello.py

See changes since a specific commit

```
$ git diff HEAD~2
$ git diff HEAD^^
```

\$ git diff fab2cdd

See changes between two commits

\$ git diff fab2cdd 7c0a5d8

See changes in one file between two commits

\$ git diff fab2cdd 7c0a5d8 hello.py

Good commit habits

Try to make a commit whenever your project is in a new working state. Make sure you're writing concise commit messages that focus on what changes have been implemented. If you're starting work on a new feature or bugfix, consider making a new branch.

Git & GitHub

GitHub is a platform for sharing code, and working collaboratively on code. You can clone any public project on GitHub. When you have an account, you can upload your own projects, and make them public or private.

Clone an existing repository to your local system

```
$ git clone
   https://github.com/ehmatthes/pcc_3e.git/
Cloning into 'pcc_3e'...
```

Resolving deltas: 100% (1503/1503), done.

Push a local project to a GitHub repository

You'll need to make an empty repository on GitHub first.

```
$ git remote add origin
  https://github.com/username/hello_repo.git
$ git push -u origin main
Enumerating objects: 10, done.
...
```

To https://github.com/username/hello_repo.git

* [new branch] main -> main

Branch 'main' set up to track remote branch 'main' from 'origin'.

Push recent changes to your GitHub repository

\$ git push origin branch_name

Using pull requests

When you want to pull a set of changes from one branch into the main branch of a project on GitHub, you can make a pull request. To practice making pull requests on your own repositories, make a new branch for your work. When you're finished the work, push the branch to your repository. Then go to the "Pull requests" tab on GitHub, and click "Compare & pull request" on the branch you wish to merge. When you're ready, click "Merge pull request".

You can then pull these changes back into your local main branch with git pull origin main. This is an alternative to merging changes to your main branch locally, and then pushing the main branch to GitHub.

Practicing with Git

Git can be used in simple ways as a solo developer, and complex ways as part of a large collaborative team. You can gain valuable experience by making a simple throwaway project and trying all of these steps with that project. Make sure your project has multiple files and nested folders to get a clear sense of how Git works.

